A Non-Strict Hierarchical Reinforcement Learning for Interactive Systems and Robots

نویسندگان

  • HERIBERTO CUAYÁHUITL
  • IVANA KRUIJFF-KORBAYOVÁ
  • NINA DETHLEFS
چکیده

Conversational systems and robots that use reinforcement learning for policy optimization in large domains often face the problem of limited scalability. This problem has been addressed either by using function approximation techniques that estimate the approximate true value function of a policy or by using a hierarchical decomposition of a learning task into subtasks. We present a novel approach for dialogue policy optimization that combines the benefits of both hierarchical control and function approximation and that allows flexible transitions between dialogue subtasks to give human users more control over the dialogue. To this end, each reinforcement learning agent in the hierarchy is extended with a subtask transition function and a dynamic state space to allow flexible switching between subdialogues. In addition, the subtask policies are represented with linear function approximation in order to generalize the decision making to situations unseen in training. Our proposed approach is evaluated in an interactive conversational robot that learns to play quiz games. Experimental results, using simulation and real users, provide evidence that our proposed approach can lead to more flexible (natural) interactions than strict hierarchical control and that it is preferred by human users.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Hierarchical Reinforcement Learning Based Self-balancing Algorithm for Two-wheeled Robots

Abstract: Self-balancing control is the basis for applications of two-wheeled robots. In order to improve the self-balancing of twowheeled robots, we propose a hierarchical reinforcement learning algorithm for controlling the balance of two-wheeled robots. After describing the subgoals of hierarchical reinforcement learning, we extract features for subgoals, define a feature value vector and it...

متن کامل

Trajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control

In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...

متن کامل

Real-Time Interactive Reinforcement Learning for Robots

It is our goal to understand the role real-time human interaction can play in machine learning algorithms for robots. In this paper we present Interactive Reinforcement Learning (IRL) as a plausible approach for training human-centric assistive robots by natural interaction. We describe an experimental platform to study IRL, pose questions arising from IRL, and discuss initial observations obta...

متن کامل

Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT

In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014